Package: highMLR 0.1.1

highMLR: Feature Selection for High Dimensional Survival Data

Perform high dimensional Feature Selection in the presence of survival outcome. Based on Feature Selection method and different survival analysis, it will obtain the best markers with optimal threshold levels according to their effect on disease progression and produce the most consistent level according to those threshold values. The functions' methodology is based on by Sonabend et al (2021) <doi:10.1093/bioinformatics/btab039> and Bhattacharjee et al (2021) <arxiv:2012.02102>.

Authors:Atanu Bhattacharjee [aut, cre, ctb], Gajendra K. Vishwakarma [aut, ctb], Souvik Banerjee [aut, ctb]

highMLR_0.1.1.tar.gz
highMLR_0.1.1.zip(r-4.5)highMLR_0.1.1.zip(r-4.4)highMLR_0.1.1.zip(r-4.3)
highMLR_0.1.1.tgz(r-4.4-any)highMLR_0.1.1.tgz(r-4.3-any)
highMLR_0.1.1.tar.gz(r-4.5-noble)highMLR_0.1.1.tar.gz(r-4.4-noble)
highMLR_0.1.1.tgz(r-4.4-emscripten)highMLR_0.1.1.tgz(r-4.3-emscripten)
highMLR.pdf |highMLR.html
highMLR/json (API)

# Install 'highMLR' in R:
install.packages('highMLR', repos = c('https://atanubhattacharjee.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • hnscc - High dimensional head and neck cancer survival and gene expression data
  • srdata - High dimensional protein gene expression data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 168 downloads 6 exports 51 dependencies

Last updated 2 years agofrom:f77a99ff94. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 09 2024
R-4.5-winOKNov 09 2024
R-4.5-linuxOKNov 09 2024
R-4.4-winOKNov 09 2024
R-4.4-macOKNov 09 2024
R-4.3-winOKNov 09 2024
R-4.3-macOKNov 09 2024

Exports:mlclassCoxmlclassKapmlhighCoxmlhighFrailmlhighHetmlhighKap

Dependencies:backportsbdsmatrixcheckmateclicodetoolscoxmedata.tabledigestdoRNGdplyrevaluatefansiforeachfuturefuture.applygenericsglobalsgluegtoolsiteratorsitertoolslatticelgrlifecyclelistenvmagrittrMatrixmissForestmlbenchmlr3mlr3learnersmlr3measuresmlr3miscnlmepalmerpenguinsparadoxparallellypillarpkgconfigPRROCR6randomForestrlangrngtoolssurvivaltibbletidyselectutf8uuidvctrswithr