Package: highMLR 0.1.1

highMLR: Feature Selection for High Dimensional Survival Data

Perform high dimensional Feature Selection in the presence of survival outcome. Based on Feature Selection method and different survival analysis, it will obtain the best markers with optimal threshold levels according to their effect on disease progression and produce the most consistent level according to those threshold values. The functions' methodology is based on by Sonabend et al (2021) <doi:10.1093/bioinformatics/btab039> and Bhattacharjee et al (2021) <arxiv:2012.02102>.

Authors:Atanu Bhattacharjee [aut, cre, ctb], Gajendra K. Vishwakarma [aut, ctb], Souvik Banerjee [aut, ctb]

highMLR_0.1.1.tar.gz
highMLR_0.1.1.zip(r-4.5)highMLR_0.1.1.zip(r-4.4)highMLR_0.1.1.zip(r-4.3)
highMLR_0.1.1.tgz(r-4.4-any)highMLR_0.1.1.tgz(r-4.3-any)
highMLR_0.1.1.tar.gz(r-4.5-noble)highMLR_0.1.1.tar.gz(r-4.4-noble)
highMLR_0.1.1.tgz(r-4.4-emscripten)highMLR_0.1.1.tgz(r-4.3-emscripten)
highMLR.pdf |highMLR.html
highMLR/json (API)

# Install 'highMLR' in R:
install.packages('highMLR', repos = c('https://atanubhattacharjee.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • hnscc - High dimensional head and neck cancer survival and gene expression data
  • srdata - High dimensional protein gene expression data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 180 downloads 6 exports 51 dependencies

Last updated 3 years agofrom:f77a99ff94. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 08 2025
R-4.5-winOKJan 08 2025
R-4.5-linuxOKJan 08 2025
R-4.4-winOKJan 08 2025
R-4.4-macOKJan 08 2025
R-4.3-winOKJan 08 2025
R-4.3-macOKJan 08 2025

Exports:mlclassCoxmlclassKapmlhighCoxmlhighFrailmlhighHetmlhighKap

Dependencies:backportsbdsmatrixcheckmateclicodetoolscoxmedata.tabledigestdoRNGdplyrevaluatefansiforeachfuturefuture.applygenericsglobalsgluegtoolsiteratorsitertoolslatticelgrlifecyclelistenvmagrittrMatrixmissForestmlbenchmlr3mlr3learnersmlr3measuresmlr3miscnlmepalmerpenguinsparadoxparallellypillarpkgconfigPRROCR6randomForestrlangrngtoolssurvivaltibbletidyselectutf8uuidvctrswithr