Package: SurviMChd 0.1.2

SurviMChd: High Dimensional Survival Data Analysis with Markov Chain Monte Carlo

High dimensional survival data analysis with Markov Chain Monte Carlo(MCMC). Currently supports frailty data analysis. Allows for Weibull and Exponential distribution. Includes function for interval censored data.

Authors:Atanu Bhattacharjee [aut, cre, ctb], Akash Pawar [aut, ctb]

SurviMChd_0.1.2.tar.gz
SurviMChd_0.1.2.zip(r-4.5)SurviMChd_0.1.2.zip(r-4.4)SurviMChd_0.1.2.zip(r-4.3)
SurviMChd_0.1.2.tgz(r-4.5-any)SurviMChd_0.1.2.tgz(r-4.4-any)SurviMChd_0.1.2.tgz(r-4.3-any)
SurviMChd_0.1.2.tar.gz(r-4.5-noble)SurviMChd_0.1.2.tar.gz(r-4.4-noble)
SurviMChd_0.1.2.tgz(r-4.4-emscripten)SurviMChd_0.1.2.tgz(r-4.3-emscripten)
SurviMChd.pdf |SurviMChd.html
SurviMChd/json (API)

# Install 'SurviMChd' in R:
install.packages('SurviMChd', repos = c('https://atanubhattacharjee.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3
Datasets:
  • frailty - Frailty in high dimensional survival data.
  • headnneck - High dimensional genomic data on head and neck cancer
  • hnscc - Hnscc Head and neck cancer data
  • mcsurv - Metronomic cancer data

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

jagscpp

1.00 score 195 downloads 7 exports 25 dependencies

Last updated 12 months agofrom:52866a4d38. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 22 2025
R-4.5-winOKJan 23 2025
R-4.5-macOKFeb 22 2025
R-4.5-linuxOKFeb 22 2025
R-4.4-winOKJan 23 2025
R-4.4-macOKFeb 22 2025
R-4.3-winOKJan 23 2025
R-4.3-macOKFeb 22 2025

Exports:fraidmfraidpmfrairandsurvexpMCsurvMCsurvMCmultisurvweibMC

Dependencies:abindbootclicodadplyrfansigenericsgluelatticelifecyclemagrittrpillarpkgconfigR2jagsR2WinBUGSR6rjagsrlangstringistringrtibbletidyselectutf8vctrswithr